
1

RIAK® KV ENTERPRISE
TECHNICAL OVERVIEW

BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM 1

A TECHNICAL OVERVIEW OF RIAK KV ENTERPRISE

RIAK KV ARCHITECTURE
MASTERLESS
At its core, Riak KV is a key/value database, built from the
ground up to safely distribute data across a cluster of
servers, called nodes.

A Riak KV cluster is a group of nodes that are in constant
communication to ensure data availability and partition
tolerance.

Riak KV has a masterless architecture in which every
node in a cluster is capable of serving read and write
requests. All nodes are homogeneous with no single
master or point of failure. Any node selected can
serve an incoming request, regardless of data locality,
providing data availability even when hardware, or the
network itself, is experiencing failure conditions.

INTRODUCTION
Basho Riak® KV Enterprise is a highly resilient NoSQL database. It
ensures your most critical data is always available and that your Big Data
applications can scale. Riak KV can be operationalized at lower costs
than both relational and other NoSQL databases, especially at scale.
Running on commodity hardware, Riak KV is operationally easy to use
with the ability to add and remove capacity on demand without data
sharding or manually restructuring your cluster.

Since Riak KV was built to address the problem of data availability with ease
of scale, it is a good fit whenever downtime is unacceptable and scalability
is critical. Riak KV is designed to survive network partition and hardware
failures. Many leading companies, from large enterprises to small startups,
are using Riak KV for mission-critical applications in a variety of use cases
and verticals.

Riak KV stores data as a combination of keys and values, and is a
fundamentally content-agnostic database. You can use it to store anything
you want – JSON, XML, HTML, documents, binaries, images, and more.
Keys are simply binary values used to uniquely identify a value.

Riak KV integrates with Apache Spark, Redis Caching, Apache Solr, and
Apache Mesos to reduce the complexity of integrating and deploying
other Big Data technologies.

EXAMPLE USE CASES

MANAGING USER AND SESSION DATA

PERSONALIZATION

SHOPPING CART AND WALLET DATA

CHAT AND MESSAGING

COMMUNICATIONS

MOBILE PLATFORMS

OPERATIONAL ANALYTICS

LOG STORAGE

MULTI-SITE BUSINESS CONTINUITY

FRAUD DETECTION

DOCUMENT STORE

2BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM

WHITEPAPER: RIAK® KV ENTERPRISE TECHNICAL OVERVIEW

THE RIAK RING
The basis of Riak KV’s masterless architecture, replication, and
fault tolerance is the Ring. This Ring is a managed collection of
partitions that share a common hash space. The hash space is
called a Ring because the last value in the hash space is thought
of as being adjacent to the first value in the space. Replicas of
data are stored in the “next N partitions” of the hash space,
following the partition to which the key hashes.

The Ring is also used as shorthand for the “Ring State.” The
Ring State is a data structure that gets communicated and
stays in sync between all the nodes, so each node knows the
state of the entire cluster. If a node gets a request for an object
managed by another node, it consults the Ring State and
forwards the request to the proper nodes, effectively proxying
the request as the coordinating node. If a node is taken offline
permanently or a new server is added, the other nodes adjust,
balancing the partitions around the cluster, then updating the
Ring State. You can read more about nodes, vnodes, clusters,
the Ring, and Ring State here.

NODES AND VNODES
Each node in a Riak KV cluster manages one or many virtual
nodes, or vnodes. Each vnode is a separate process which is
assigned a partition of the Ring, and is responsible for a number
of operations in a Riak cluster, from the storing of objects, to
handling of incoming read/write requests from other vnodes, to
interpreting causal context metadata for objects.

This uniformity of Riak KV vnode responsibility provides the basis
for Riak KV’s fault tolerance and scalability. If your cluster has 64
partitions and you are running three nodes, two of your nodes
will have 21 vnodes, while the third node holds 22 vnodes.

The concept of vnodes is important as we look at data
replication. No single vnode is responsible for more than one
replica of an object. Each object belongs to a primary vnode,
and is then replicated to neighboring vnodes located on
separate nodes in the cluster.

INTELLIGENT REPLICATION
Riak KV automatically distributes data across nodes in a
Riak KV cluster and yields a near-linear performance increase
as you add capacity. Data is distributed evenly across nodes
using consistent hashing. Consistent hashing is a special kind of
hashing such that when a hash table is resized and consistent
hashing is used, only K/n keys need to be remapped on average,
where K is the number of keys, and n is the number of slots.

In contrast, in most traditional hash tables, a change in the
number of array slots causes nearly all keys to be remapped.

When you add (or remove) machines, data is rebalanced
automatically in a non-blocking operation. Riak KV will continue
servicing read and write requests, allowing the ability to
perform scaling operations without the need for downtime.

Any new machines that are added to a cluster claim a portion
of the overall dataset, which is then redistributed, with the
resulting cluster status shared across all vnodes. Consistent
hashing and vnodes ensure horizontal scale across N servers.

Replication ensures that there are multiple copies of data
across multiple servers. By default, Riak KV makes 3 replicas,
each belonging to a unique vnode. The primary benefits derived
from replication are high availability and low latency. If a server
in the cluster becomes unavailable, other servers that contain
the replicated data remain available to serve requests and the
whole system remains highly available.

To further understand Riak KV’s intelligent replication, it is
helpful to understand how data is distributed across the cluster.
Riak KV chooses one vnode to exclusively host a range of keys,
and the other vnodes host the remaining non-overlapping
ranges. With partitioning, the total capacity can increase by
simply adding commodity servers.

Since replication improves availability and partitions allow us to
increase capacity, Riak KV combines both partitions and replic-
ation to work together. Data is partitioned as well as replicated
across multiple nodes to create a horizontally scalable system.

Node 0

ring with 32
partitions

a single vnode/partition

Node 1

Node 2

Node 3

THE RIAK KV “RING” ARCHITECTURE

http://docs.basho.com/riak/latest/theory/concepts/Clusters/

3BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM

WHITEPAPER: RIAK® KV ENTERPRISE TECHNICAL OVERVIEW

EVENTUAL/RELAXED CONSISTENCY
One of the important differences and key advantages of some
NoSQL systems is the concept of relaxed consistency. Relaxed
consistency, also known as eventual consistency, means that
not all of the assigned nodes for a transaction in a distributed
system need to have that transaction confirmed before the
distributed system considers that transaction to be complete.
This allows for a higher degree of workload concurrency and
data availability.

The CAP theorem, also known as Brewer’s theorem, defines a
natural tension and trade-offs between three core operational
capabilities in distributed systems and database infrastructure
— Consistency, Availability, and Partition Tolerance.

Riak KV is a tunable AP system. By default, Riak KV replicas
are “eventually consistent,” meaning that while data is always
available, not all replicas may have the most recent update at
the exact same time, causing brief periods—generally on the
order of milliseconds—of inconsistency while all state changes
are synchronized. Riak KV is designed to deliver maximum
data availability, so as long as your client can reach one Riak KV
server, it can write data.

HANDLING VERSION CONFLICTS AND
RECOVERING DATA CONSISTENCY
In any system that replicates data, inconsistencies can arise. For
example, when two clients update the same object at the exact
same time, or when not all updates have yet reached hardware
that is experiencing heavy load or network delay.

When you make a read request, Riak KV looks up all replicas for
that object. By default, Riak KV addresses any inconsistencies
by returning the most recently updated version, determined by
looking at the object’s Dotted Version Vector, or DVV. DVVs are
metadata attached to each data replica when it is created. They
are extended each time a data replica is updated in order to
keep track of data versions.

There are two processes which continually check and repair any
divergent replica sets, which are the results of replication failure
(e.g. disk failure, data corruption, etc.). With read repair,
Riak KV will automatically update the out-of-sync replica to
make it consistent during a read operation. A more advanced
capability, called Active Anti Entropy, addresses colder data

in the cluster. AAE is a background process which continually
compares merkle trees across replica sets to determine
discrepancies. Both are key to preventing the need for manual
operator intervention under failure scenarios.

NODE OR NETWORK FAILURE RECOVERY
Due to replication and eventual consistency, it then becomes
important to understand the concept of quorums, which
define the success or failures of reads and writes. A quorum is
defined by the number of replicas that you define. By default, a
quorum is half of all the total replicated nodes plus one more (a
majority).

You can set a value to give you control over how many replicas
must respond to a read or write request for the request to
succeed (“R value” for reads and a “W value” for writes). If this
value is not specified, Riak KV defaults to requiring a quorum,
where the majority of nodes must respond.

A “strict quorum” is where a request would fail (and deliver an
error message to the client) if the required number of primary
nodes cannot accept requests. Using the strict quorum would
work for most requests. However, at any moment, a node
could go down or the network could partition, triggering the
unavailability of the required number of nodes. Therefore, to
provide high availability, Riak KV defaults to what is known as a
sloppy quorum, meaning that if any primary (expected) node
is unavailable, the next available node in the cluster will accept
requests. That node will then update the primary node when it
comes back online. This ability to easily handle node failures is
known as a hinted handoff.

Consistency

Partition
ToleranceAvailability

CA CP

AP

4BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM

WHITEPAPER: RIAK® KV ENTERPRISE TECHNICAL OVERVIEW

Hinted handoff ensures that if a node goes down, a neighboring node will take over its storage operations. When the failed node
returns, the updates received by the neighboring node are handed back to it. This ensures that availability for writes and updates is
maintained automatically, minimizing the operational burden of failure conditions.

RIAK KV DEVELOPMENT CONCEPTS
READING AND WRITING DATA
Riak KV stores data as a combination of keys and values in buckets. Keys are simply binary values used to uniquely identify a value.
A value is the data that is associated with a key and stored. Values can be numbers, strings, binaries, or almost any data. Buckets
are used to define a virtual namespace for storing Riak KV “objects.” In Riak KV, an “object” is a nickname for the combination of a
bucket, key, and value.

Key/Value stores are conceptually like hash tables, where values are stored and accessed by an immutable key. Riak KV functions
like a very large hash space, also known as a hash table, a map, a dictionary, or an object.

Most of the operations you’ll perform with Riak KV will be setting or retrieving the value of a key (reading and writing key/value
pairs). Other operations, such as advanced (SOLR) querying and bucket configuration, can be done via the Riak KV HTTP API or via
the Riak KV Protocol Buffers Client API.

BUCKETS AND BUCKET TYPES
Buckets in Riak KV provide logical namespaces so that
identical keys in different buckets will not conflict. Buckets
allow for cleaner key naming, and have other benefits,
such as custom properties. Since all keys must belong to a
bucket, there is no global namespace. A unique key in
Riak KV is defined by bucket/key.

There is also a level of classification that exists above
buckets, called “bucket types.” Bucket types are groups
of buckets with a similar set of properties. The benefit
of bucket types is that a group of distinct buckets can
share properties. This has practical implications such that
with bucket types, and the communication mechanism
that accompany them, there’s no limit to your bucket
count. Since every bucket of a type inherits the common
properties, you can make across-the-board changes
trivially, making managing multiple buckets easier.

Additionally, Riak Spark Connector (described below) has
a special query type, called “full bucket read,” which allows
bulk retrieval of the whole bucket, without providing the
keys — unlike other queries.

RIAK KV SEARCH AND SECONDARY INDEXING
Riak KV exposes several other functionalities for searching
and accessing data including MapReduce, full-text search,
and secondary indexing.

Riak KV provides Riak KV Search, a full-text search engine
that indexes objects on write and provides an easy, robust
query language plus integration with Apache Solr. Riak KV
Search is ideal for indexing content like posts, user bios,
articles, and other documents, as well as indexing JSON
data. For more information on Riak KV Search, see the
documentation on Riak KV Search.

Secondary indexing allows you to tag objects in Riak KV
with one or more queryable values. These “tags” can then
be queried by exact or range value for integers and strings.
Secondary indexing is great for simple tagging and for
searching Riak KV objects for additional attributes. Find out
more about Secondary Indexing here.

https://docs.basho.com/riak/latest/dev/references/http/
https://docs.basho.com/riak/latest/dev/references/protocol-buffers/
http://docs.basho.com/riak/latest/dev/using/search/
http://docs.basho.com/riak/latest/dev/references/http/secondary-indexes/

5BASHO TECHNOLOGIES, INC. // WWW.BASHO.COM

WHITEPAPER: RIAK® KV ENTERPRISE TECHNICAL OVERVIEW

RIAK DISTRIBUTED DATA TYPES
Riak Distributed Data Types provide the developer a rich set
of data types to build distributed applications. These include:
Flags, Registers, Counter, Sets, Maps, and HyperLogLog. These
data types enable you to perform operations, such as counting
the number of users, or whether a user has signed up for a
specific pricing plan. Counters, sets, and maps can be used as
bucket-level data types or types that you interact with directly.
Maps are the most versatile of the Riak Data Types, because all
other data types can be embedded within them (including maps
themselves). This enables the creation of complex, custom data
types from a few basic building blocks. Using counters, sets, and
maps within maps is similar to working with those types at the
bucket level. Using these data types, Riak automatically handles
any read conflict resolution on the server side so developers
can simplify their client-side coding.

Although Riak Distributed Data Types function differently from
other Riak KV objects in some respects, when you’re using
Search you can think of them as normal Riak KV objects with
special metadata attached (metadata that you don’t need to
worry about as a developer). Riak Data Types have a deep
integration with Riak Search. Riak’s counters, sets, and maps can
be indexed and have their contents searched just like other Riak
objects without having to create custom schemas.

Riak KV currently implements the following Data Types:

• Flags — Flags behave much like Boolean values, except that
instead of true/false flags, the values are enable/disable.

• Registers — Registers are essentially named binaries (like
strings). Any binary value can act as the value of a register.

• Counters — Counters can only be a positive or negative
integer, or zero.

• Sets — Sets are collections of unique binary values, such as
strings.

• Maps — Maps are the richest of the Riak KV Data Types,
because, within the fields of a map, you can nest any of the
five Data Types, including maps themselves.

• HyperLogLog — HyperLogLog is used to approximately
count unique elements within a data set or stream, for
example counting unique IP addresses or User IDs.

RIAK KV SUPPORTED PROGRAMMING LANGUAGES
There are a diverse group of client libraries for Riak KV that support both the HTTP API and Protocol Buffer APIs.

Protocol buffers are Google’s language-neutral, platform-neutral, extensible mechanism for serializing structured data – like XML, but
smaller, faster, and simpler. Riak KV Enterprise includes a complete set of development tools to help you get productive more quickly.

• Basho Supported Libraries — Java, Ruby, Python, PHP, Erlang, .NET, Node.js

• Community Libraries — C, Clojure, Go, Perl, Scala, R

SPARK CONNECTOR
Modern Big Data applications need to process data in real time to reveal patterns, trends, and associations. The Spark Connector
efficiently retrieves data from Riak KV to Spark for in-memory distributed processing, then the results can be stored back in Riak KV
as needed. The ability to persist these results to Riak KV provides flexibility for future data processing or analysis.

The Spark Connector leverages secondary indexes to perform the queries while partitioning the results across a number of Spark
Worker nodes for fast and reliable distributed in-memory processing. With Riak KV, Spark cluster deployments are as simple as
specifying where the code should be deployed. Both static information (configuration) and dynamic information (port numbers,
etc.) are managed at the time of installation.

The new advanced Data Types are a game changer for us, because it makes it
simple for us to manage our data model at a scale that supports over a billion

devices all around the world.
– Weston Jossey, Head of Operations, Tapjoy

http://docs.basho.com/riak/kv/latest/learn/concepts/crdts/

BASHO TECHNOLOGIES, INC 617.714.1700 // WWW.BASHO.COM
10900 NE 8TH STREET
SEATTLE, WA 98004

WHITEPAPER: RIAK® KV ENTERPRISE TECHNICAL OVERVIEW

ABOUT BASHO TECHNOLOGIES
Basho, the creator of the world’s most resilient databases, is dedicated to developing disruptive technology that
simplifies enterprises’ most critical distributed systems data management challenges. Basho has attracted one of the
most talented groups of engineers and technical experts ever assembled devoted exclusively to solving some of the
most complex distributed systems challenges presented by Big Data and IoT.

Basho’s database, Riak® KV, the industry leading distributed NoSQL database, is used by fast growing Web businesses
and by one-third of the Fortune 50 to power their critical Web, mobile and social applications. Built on the same
foundation, Basho introduced Riak TS, which is the first enterprise-ready NoSQL database specifically optimized to
store, query and analyze time series data. Basho also provides Riak integrations for a variety of Big Data technologies
like Apache Spark, Redis, Mesos, and Apache Solr.

For more information visit Basho.com which is full of interesting use cases, customer case studies and product detail,
or docs.basho.com for technical documentation.

RIAK KV ENTERPRISE
Riak Enterprise is a commercially distributed product built on Riak (Apache 2.0-licensed) that extends Riak’s capabilities with Multi-
cluster Replication, SNMP monitoring, JMX-Monitoring, and 24x7 support.

Multi-cluster Replication

Riak KV Enterprise offers Multi-cluster Replication features so that data stored in Riak KV can be replicated for backup-clusters,
analysis clusters, or for multiple datacenters. With Riak KV Enterprise, data can be replicated across the datacenter or across
geographic areas, providing disaster recovery, data locality, compliance with regulatory requirements, the ability to “burst” peak
loads into public cloud infrastructure, and more.

In Multi-cluster Replication, one cluster acts as a primary, or source, cluster. The primary cluster handles replication requests from one
or more secondary clusters (often located in datacenters in other regions or countries). If the datacenter with the primary cluster goes
down, a secondary cluster can take over as the primary cluster. In this sense, Riak’s multi-cluster capabilities are “masterless.”

There are a number of use cases where Multi-cluster Replication is essential to fulfilling the business requirements of your data
store including: Primary Cluster with Failover, Active - Active Cluster, Availability Zones, Secondary Analytics Clusters, and Public
Cloud use cases. For more detailed discussion of the various Multi-cluster Replication use cases, take a look at the Multi-cluster
Replication Technical Overview.

NEXT STEPS
To get started with Riak KV, you can download the open source at http://basho.com/download.

If you are evaluating Riak KV Enterprise, please contact us. We would be happy to arrange a tech
talk with your team, or answer any questions about our product and how customers are using it in
production to meet their business goals. If you want to try Riak KV Enterprise, we can provide a free
developer trial that you can set up on your own hardware and evaluate on your own time. Finally,
our Professional Services Team can assist you in planning, setting up, and optimizing your multi-
datacenter strategy.

10/2016

http://docs.basho.com/
http://info.basho.com/Web-MCR-Technical-Overview-LP.html
http://info.basho.com/Web-MCR-Technical-Overview-LP.html
http://basho.com/download
http://basho.com/contact/

